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Abstract-The Kantorovich variational method has been used to obtain the approximate solutions of the
nonlinear combined heat and mass transfer problems under first- and second-kind boundary conditions in an
infinite plate. The solutions obtained have the property of convergence and the accuracy suitable for practical

applications.

l"O~IEl"CLATURE

Fo Fourier number (nondimensional time)
Kim mass transfer Kirpichyov number
Kiq heat transfer Kirpichyov number
Ko* modified Kossovich number
L Lagrangian depending on functions of one

variable, Fo
!i' Lagrangian depending on functions of two

variables, X and Fo
LII Luikov number
PII Posnov number
X non dimensional space coordinate.

Greek symbols

01(X, Fo) nondimensional temperature
02(X, Fo) nondimensional mass transfer potential.

Superscripts

8/8Fo.

Il"TRODUCTION

IN RECENT times the variational method is finding
increasing use in the analysis of diffusion, heat
conduction, and also ofcombined transport ofdifferent
substances [1-9]. When used for the solution of the
above problems, the method has a number of
advantages due to which it has been given growing
attention. Indeed, the variational principles that
underlie the method used in the present work allow one
to formulate the problem more compactly since they
involve both the fundamental equations and the
boundary conditions of the problem. This approach
enables one to apply direct variational methods for the
solution of problems, such as the methods of Ritz,
Trefftz, and Kantorovich et al. Then, the solutions
obtained are characterized by an increasing, and
sometimes appraisable, accuracy. Moreover, the
stationary nature of the variable integral makes the
variational method less sensitive to the errors in the
functions which approximate the solution of the
problem, as compared with the other methods. At times
this allows one, already at the first stage of calculations,
to obtain a good approximation to the exact solution
without constructing a full solution. This property of

the variational methods makes them especially
attractive for the investigation of nonlinear problems
when the construction of the full solution is found to be
difficult or impossible. This is also favoured by the fact
that the variational methods imply the possibility of
using a variety of additional information on the
problem, the physical included.

This paper considers the specificsof the Kantorovich
variational method as applied to the solution of the
nonlinear problems of combined heat and mass
transfer. Traditionally, these problems are formulated
in the form of the systems of partial differential
equations which incorporate contributions from the
direct and coupled effects of transfer. Such systems
include the second derivatives of the unknown
functions with respect to spatial coordinates and the
first derivatives with respect to time, i.e. contain both
the diffusion and dissipation terms.

For the first time the system ofequations of this type
was suggested by Luikov with reference to the
phenomenon of drying [10]. Subsequently, it turned
out that a similar technique can be used to formulate
the mathematical models of a wide class of combined
transfer phenomena in continuous media [11]. The
current interest in the investigation of the nonlinear
models of combined heat and mass transfer is spurred
by the fact that the studies of the phenomena in other,
far from physics, areas of research result in models of
this kind. For example, in biology this is the space-time
dynamics of biogeocenoses [12]; in sea ecology, the
distribution of phytoplankton, zooplankton and
nutrient substances over the depth from the water
surface and with time [13]; in medicine, it is the spread
of epidemic diseases in space and time [14], the growth
of malignant tumours [15], etc. In spite of the fact that
the derivation ofsuch equations isbased on the account
for the specific laws governing the behaviour of
particular systems, the final form of the equations and
boundary conditions is close to the system of heat and
mass transfer equations suggested by Luikov.

FORMULATION OF TIlE PROBLEM

The effectiveness of the variational approach in the
solution ofthe above problems willbe considered in the
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example of combined heal and mass transfer in an
infinite porous plate. This is a one-dimensional
problem.The coordinate plane X = 0 is assumed to be
coincident with the middle of the plate. while the
dimensionless coordinate X varies within the range
-1 ,.;: X ~ 1. Assuming the properties of the medium,
in which heat and mass transfer occurs (thermal
conductivity. mass conductivity, Soret coefficient). to
be dependent on temperature and mass transfer
potential, the system of heat and mass transfer
equations [11] can be written in the form

° a [ aOIJ01 = ax (M I +Ko* Pn LII K) ax

a ( 002 )-Ko* LII- M2-ax ax'

. a (ao l ) a ( a02 )O2 = -LII Pn - K- +LII- M 2 -ax ax ax ax'
(1)

where M I = 1+11I1°1; M 2 = 1+111202; K = l+kO,;
and 111" nI2, k = const.

The problem will be considered subject to the
constant boundary conditions of the first and second
kind.

Following the approach considered in detail in ref.
[6], the variational formulation of the heat and mass
transfer problem (1) under these boundary conditions
may be represented in the form of the Hamilton type
variational principle with carrying out the limit M = O.
In this case the functional I has the form [Fa, and F02

being the arbitrary time moments (Fo, < F02)]

Lagrange equations for functional (2) can be written as

a!fl a a!fl a o!fl
aOi - aFo ao; - ax c(cojaX)

a2 a!fl
+ ax2 iWOjaX2) = 0 (i = 1,2). (4)

Using the Lagrange function (3) in equation (4), and
after dividing both sides of the equation by exp (Fol!!),
the following expressions are obtained

Here the functions of G,on the RHSs do not contain the
parameter !!. Thus, the limit transition A -> 0 brings
these expressions to the form of equations (1).

An important fact in the considered variational
principle is the adherence to the order in which the
variation and limit transition are carried out. This very
order of operations should also be observed in realizing
a particular variational method based on , the
Hamiltonian principle which involves the limit
transition.

The parameter Aoccurring in the above expression is
allowed to go to zero on completion of the procedure of
functional variation. This leads to equations (1) as a
condition for the functional (2) to be stationary within
the class of functions statisfying the . boundary
conditions. Assuming, in fact, that any natural
boundary conditions are absent and taking 01 and O2 to
be the generalized coordinates, the system of Euler-

iF
•

1 flI = !fI dX dFo,
EOI -1

while the Lagrange function !fI is written as

!! {[. a [ aOIJ!fI =2" °1 - ax (M I +Ko* Pn LII K) ax

a ( eo )J2+Ko* LII ax M 2 a;

[

0 a (ao l ) a+ 02+ L II PI! ax Kax -Lu ax

(
a02)J2} Fox M2ax exp~.

(2)

(3)

TIlE KA\'I,"TOROVICH VARIATIONAL METHOD

The Kantorovich variational method [16] pertains
to direct methods of problem solution. By its
importance for the solution of differential equations,
the method holds an intermediate position among
those giving exact solutions and the Ritz and Bubnov­
Galerkin methods. The use of the Ritz variational
method for the solution of the heat and mass transfer
problems [9] consists in the replacement of the
extremal problem for the functional by the problem of
finding the extrema of the functions of many variables.
This is achieved by introducing into the solution­
approximating functions the indeterminate constants
which are then chosen so that these functions would
best satisfy the variational problem.

When the Kantorovich method is used, the
distribution of the heat and mass transfer potential
fields should be approximated in the class offunctions
which contain, as unknown parameters, the functions
of one variable (e.g. of time). Of course, this class of
functions encompasses as a subclass the approximating
functions used in the Ritz method. This is the reason for
the higher accuracy of the Kantorovich method. The
other advantage of the method lies in the fact that here
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only a portion of the expression, which gives the
solution, is chosen arbitrarily. The other part of the
functions is determined based on the nature of the
problem. In this case, if the functions approximating
the transfer potentials, are given by the expressions of
the form

for the cPi. functions is eventually arrived at

¢'P= (2p+ W[8 Jo N(TcP~.-11l2A2cPi.)
00

+ I P(TcP'ncPlI- 11l2 A2cP2ncP2/)
••/~O

a!i' a a!i'

aA.. - -a- -,-- = 0 (i = 1,2; n = 0, 1,... , (0). (7)
'l'i. Fo acPi.

The Lagrangian Lin the functional (6) depends only
on the functions of one variable, Fo. Therefore, the
Euler-Lagrange equations for it have the form

(12)

- .~o Q(TcPlncPIP- 11l2 A2cP2ncP2P)]

:n;2
-"4(A ,cP'P- A2cP2P)'

00

+ I P(11l2 A3cP2.cP2/- kA4cP'ncPlI)
,,/~O

- n~o Q(11l2A3cP2ncP2P)-kA4cPI.cPIP]

:n;2
- "4 (A3cP2p-A4cPlp) (p = 0, 1'00" (0),

(5)

(6)

00

O.{X, Fo) = I cPi.(Fo)J~n(X) (i = 1,2),
n;;O

where J~.(X) are the coordinate functions, and cPin(FO)
the functions to be determined, then, upon integration
over the spatial coordinate, equation (2) is reduced to

In our case equations (7)contain also the parameter where
/1.Theoperation Ac-sobrings equations (7)to a system A, = 1+Ko* Pn L,,; A

2
= Ko* L,,; A

3
= L,,;

of ordinary differential equations to determine the
unknown functions cPi.(Fo) in equations (5). A4 = Lu Pn ;

BOUNDARY COl"DITIO:'\S OF THE FIRST KIl"D

Assume the following boundary conditions

OJ-1, Fo) = O.{I, Fo) = 0, (8)

O,{X, 0) = 1 (i = 1,2). (9)

The solution will be sought in the form

4 00 (-I)"
O,{X, Fo) = - I -- cos

:n; .~o 2n+ 1

(2n+ 1):n;X .
2 cPi.(Fo) (I = 1,2). (10)

The boundary conditions (8) are fulfilled for
equations (10).If the functions cPin to be determined are
made to obey the condition

cPin(O) = 1 (i = 1,2; /I = 0, 1'00" (0), (11)

then the initial conditions (9)will also be fulfilled. In this
case the compliance with the boundary conditions is
ensured by the construction of the approximating
functions (10) on the basis of the familiar exact solution
of the heat conduction equation [17] obtained under
the same boundary conditions.

Substitute equations (10) into the Lagrange function
(3) and integrate over X in the functional (2). Then
setting up the Euler-Lagrange equations in the form
of equations (7) and carrying out the limit transition
/1--.0, the following system of differential equations

r 1
T = 11l, +k Ko* Pn Lu; N = -,-- - -32;

,..]lV r

P = ~[a.+f1+Y+II- ~ (CC+ f1- Y-II)];). r

Q = G+ )~2)G-~-~) -)~:V;
i. = 2p+ 1; It = 4n-2p+ 1; v = 4n+2p+3;

r = 2n+ 1; e = 2/+ 1; a. = [2(P- n -I) - 1r I ;

f1 = [2(p-n+l)+ lr ';}' = [2(p+n+I)+3r ';
II = [2(p+n-l)+ n I.

The above expressions constitute a system of
ordinary first-order differential equations written
down in normal form.

If in the initial system of equations (1) [and
accordingly in the Lagrangian (3)] it is assumed that
1/1, = 1/12 = k = 0, then the nonlinear problem of
combined heat and mass transfer is transformed into a
linear problem with the boundary conditions (8) and
(9). In this case, equations (12) take on the form

:n;2
¢'P= -"4 (2p+ 1)2(A ,cP'P- A2cP2p),

.:n;2 2
cP2p ="4 (2p+ 1) (A4cPlp- A3cP2p)

(P = 0,1"00,(0). (13)

The solution of the system of homogeneous
differential equations (13), for example, at different real
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roots of the characteristic equation 5I and 52and initial
conditions (II) is written as

l-I2 1-)'1
t/>lp(Fo) =----=-; exp 51 Fo- , _) exp 52 Fo,

J'I '2 1"1 '2

l-I2
t/>2p(Fo) = )'1--;,- exp 51 Fo

II- ' 2

1-)'1
-)'2-)_) exp 52 Fo (p = O,I, .. . .co),

'1 -2

where

1 [ 4s· ]
J·t = A

2
Al + 1t2(2p~ 1)2 (i = 1,2);

n2

51.2 = - 8(2p+ 1)2{AI +A3

±.J[(AI + A 3) 2 -4(A IA 3 - A2A 4 )]} ·

If in equation (1) it is additionally assumed that
Ko" = PII = LII = 0, then the problem of combined
heat and mass transfer degenerates into the linear heat
conduction equation, while equation (13) takes on the
form (the first sub script is omitted)

This equation, with account for the initial conditions,
yields

t/>p(Fo) = exp [ - :2 (2p+ 1)2FoJ(p = 0, 1,... , eo).

(14)

The substitution of equation (14) into equation (10)
gives the following expression for the temperature
distribution

O(X, Fo) =~ I (-1)"
n n=O 211+ 1

[
n2 ] (211 + l)nX

x exp - "4(211+ WFo cos 2 '

which completely coincides with the familiar solution
of the linear heat . conduction problem under the
considered boundary cond itions obtained by another
method [17] .

In the general case the solution of the system of
nonlinear equations (12) is unobtainable in analytical
form. However, at specific coefficients its solution is
easily obtained by numerical methods. For example,
the use of the Runge-Kutta method at nil = nl2 = k
= 0.1 and 0.5 and similarity numbers Ko" = 0.33,
PII = 0.5 and LII = 2.0 gives the following table
(Table 1)of results for the first three terms ofeach series
(10).

Figure 1 shows the distribution of the heat and mass
transfer potentials obtained by the Kantorovich
method at the same simil arity numbers and coefficients
111 1 = 1112 = k = 0.1. It also contains the results of the
solution ofthis problem by the Ritz method [9] and by
the finite-difference method with application of the
explicit difference scheme. The comparison shows a
sati sfactory agreement between the result s obtained by
different methods. If, in this case, the solution given by
the finite-difference method is taken as a standard one,
then it can be noted that the Kantorovich method
entails lesser errors than the Ritz method.

The examination of equation (10) at different values
of the coefficients in equ ation (1) allows one to trace the
convergence of approximate solutions for 01 and O2 on
an increase in the number of series terms. For example,
for the coefficients 1IIl> 1112.and k in the range from 0 to 1
the inclu sion of the second terms in the functions (10)
alters the solution, obtained only with the first term, by
no more than 2.8%. The inclusion of the third term of
the series alters the solution by less than 0.4%.

ROUNDARY CO:-ODlTlO:-OS OF TilE SECO!'o'D KIND

Consider the system of equations (1) with the
boundary conditions of the form

eo. eo.a; (1, Fo) = Q., a; (-1, Fo) = -Qt.

O~X, 0) = 0 (i = 1,2) (15)

Table 1.The values of the first three functions rP/} in equations (10)at 111 1 = 1112 = k = 0.1 and 0.5
(Ko· = 0.33, Pn = 0.5, Lu = 2.0)

<Pi}
Fo m l ,m2,k 910 <Pu <P12 <P20 rP21 <P22

0.2 0.1 0.7246 -0.0499 0.0709 0.6491 -0.0255 0.1416
0.5 0.8086 -0.5499 0.0745 0.7323 -0.3822 0.1309

0.4 0.1 0.5102 -0.0400 0.Q708 0.4337 -0.0289 0.1412
0.5 0.6281 -0.5728 0.0734 0.5253 -0.3551 0.1295

0.6
0.1 0.3537 -0.0196 0.0706 0.2934 -0.0138 0.1410
0.5 0.4692 -0.2982 0.0707 0.3755 -0.1829 0.1315

0.8
0.1 0.2431 -0.0091 0.0706 0.2003 -0.0063 0.1409
0.5 0.3397 -0.1319 0.0695 0.2681 -0.0816 0.1337

1.0
0.1 0.1664 -0.0042 0.0706 0.1367 -0.0029 0.1408
0.5 0.2407 -0.0572 0.0679 0.1904 -0.0361 0.1341
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(0) (b)

0.808
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x x
FIG. 1.The distribution ofthe fieldsofnondimensional transport parameters at X ;;. Oand first-kind boundary
conditions: (a) for 0.; (b) for O2 (--, the solution by the Kantorovich method; ---, by the

finite-difference method; 0, by the Ritz method). Ko" = 0.33, Pn = 0.50, Lu = 2.0; Ill. = 1Il2 = k = 0.1.

where QI = Kiq; Q2 = PII Kiq+Kim; ta; Kim
= const.

The approximating functions which satisfy the
boundary conditions (15)can be constructed using the
structure of the familiar solution of the linear heat and
mass transfer problem subject to the second-kind
boundary condition [11].

Let us assume that

00 2 2
L L (-I)"--z ci

"=1 i=1 (wn)

x cos (IInX)1>1"~Fo),

1
02(X, Fo) = Kim LII Fo- 6(1-3X2)(Pn Kiq+Kim)

00 2 2
- L L (-I)"-z C,/,

"= I i= I (IJn)

X cos (IJnX)1>2",{Fo),

where

vJ =}{(I+KO* PII+ L)+(-IY

xJ[( 1+Ko* PII+LY + ~J} (j = 1,2). (16)

In the exact solution of the linear heat and mass
transfer problem [11] the functions 1>lni and 1>2"i are

defined and have the form

1>lni = exp [ -(nll)2v; LII Fo],

1>2"i = exp [ -(mlfv; LII Fo].

Therefore, when determining the functions 1>1"i and
1>20i, which are unknown in our case, the initial
conditions should have the form

(17)

Substituting equation (16) into (3) and performing
the same operations as those used for the solution of a
similar problem with the boundary conditions of the
first kind, the following system ofequations is obtained
to determine the unknown functions 1>1"i and 1>2"; in
equations (16)

• [ 2 7 . J1>111=- n(AI+RTFo)-4KlqT 1>111

- ~Kiq T1>121 +A2B[n2(1 +A 31112 Kim Fo)

7 J 8- 4"11I2Q2 1>Zl1 + 9A2QzI1I2 B1>22 I

1
- 4"F1>2111>221- D,

. 176. [ 21>121 = gKlq T1>111- 4n (AI +RT Fo)

9 J 176- 4"KiqT 1>121- gAZQ2 1112 B1>211

+ A2B[4n2(1 +A 31112 KimFo)- ~1II2Q2J1>22 I

+8T(q +q)1>~11-8F1>~11-D,
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~211 =A48[(n
2(1+kR Fo)-~k Kiq)J 4> I I I

S
+ "9A4k Kiq 84>121

-A{n 2(1+A3111 2 Kim Fo)

7 J S- ;t"2Q2 4>211 - 9" A 3IIJ 2Q24> 22 I

. 176
4>221 = -9A4k xs, 84>111

+A4B[4n
2(l+kR Fo)

9 J 176
-4 k Kiq 4>12I+T A3Q211l24>211

- A{4n 2(1 +A3 1112 Kim Fo)

9 J 2 2-411l2Q24>22I-SG4>III+SV4>21I+E,

4>112 = 4>111> 4>122 = 4>121'

4>212 = 4>211> 4>222 = 4>221' (IS)
where

. , . C'i'+q
R = KI - Ko* LII KI . 8 = .

q m' C'!+q'

3 ~ 2
D = C'!+q (T Klq-A 21112Q2);

(CJ+C2')2
F = A2111 2 C'! +q ;

3 .2 2
E = C'i'+ q (A4k Klq -A3111 2Q2);

(C'l+q)2
G=Ak .

4 CJ+C2' ,

v = A311l2(C'i' + C2').

The system of equations (1S)includes four first-order
differential equations that can be easily solved by
numerical methods at the initial conditions (17), while
at 111 1 = 1112 = k = 0 (the linear heat and mass transfer
problem) can also be solved in analytical form.

Table 2 contains, as an example, the results of
computer calculations of these functions at 111 1 = 1112

= k = 0 and 1111 = 1112 = k = 0.5 (nonlinear problem).
The following values of the similarity numbers were
used : Ko* = lA, Pn =0.5, LII = 0.6, Kiq = I, and Kim
= 0.5.

Figure 2 gives the comparison of the approximate
solutions of the linear heat and mass transfer problem
at the second-kind boundary conditions with the exact

solutions of this problem [II].The comparison shows a
good coincidence of the results, while the limiting
absolute error of the approximate computer solutions
is calculated to be I.S% for 01and 2.1% for 02' In both
cases it is attained at X = 1.0 and small values of Fo.

Figure 3 presents the solutions of the nonlinear heat
and mass transfer problem for 01 and 02' The
comparison with the solutions of the linear problem
(Fig. 2) reveals a certain retardation in the process of
heat and mass transfer at the chosen values of
coefficients and similarity numbers in the nonlinear
case.

Just as under the first-kind boundary conditions, the
basic contribution to the solution of the problem is
made by the first terms of the approximating
expressions (16).In fact, the inclusion of the second term
in the series (16) alters the solution by less than 1.5%. A
good accuracy and convergence of the variational
solutions at the second-kind boundary conditions can
be explained by an advantageous choice of the
approximating functions on the basis of the solutions
for the linear heat and mass transfer problem.

CO;-';CLUSION

The Hamilton variational principle with the limit
transition and the Kantorovich method allow the
solution of the problems of combined heat and mass
transfer in porous bodies when the thermophysical
clements depend 'on the transfer potentials. The
boundary-value problem for the system of partial
differential equations is replaced in this case by the
Cauchy problem for the system of ordinary differential
equations. These are derived in a well-substantiated
form: have the first order, normal form, constant
coefficients and the initial conditions convenient for
numerical calculation. In the case of a linear heat and
mass transfer, the equations obtained are solved
analytically, while in the nonlinear case, by the well
known and tested numerical methods on a computer.
This would require machine time J--4 times less than
for the full solution of the problem by the finite­
difference method.

The choice of the approximating functions based on
the solution of the linear problems of heat conduction
and combined heat and mass transfer with the same
boundary conditions allows one to obtain rather
accurate and convergable distributions of the
potentials of heat and mass transfer in a bound
substance. A satisfactory accuracy is achieved already
after the use of the first three or four terms of the series.
The use of such approximating functions expands the
range ofapplicability of the well-known solutions to the
linear problems of transfer and increases their practical
significance .

The solutions obtained in the present work for the
nonlinear problems ofcombined heat and mass transfer
under the first- and second-kind boundary conditions
allow one to trace the effect of the nonlinear
characteristics of the conducting medium on the
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Table 2.The values ofthefunctions </>ii/in equationsf lolat m, = nl2 = k = 0
and 0.5 (Ko* = 1.4, Pn = 0.5, LII = 0.6, Kiq = 1, Kim = 0.5)

</>ii/
Fo IIlI> /Il2, k </>111 </>121 </>211 </>221

0.2
0.0 0.4127 0.0477 0.5114 0.0602
0.5 0.3305 0.1152 0.4563 0.1710

0.4
0.0 0.1991 0.0027 0.2512 0.0034
0.5 0.0814 0.0034 0.1507 0.0271

0.6
0.0 0.0974 0.0002 0.1230 0.0002
0.5 -0.0338 -0.0362 -0.0042 -0.0331

0.8
0.0 0.0477 0.0000 0.0602 0.0000
0.5 -0.0855 -0.0546 -0.0791 -0.0652

1.0
0.0 0.0233 0.0000 0.0295 0.0000
0.5 -0.1065 -0.0628 -0.1130 -0.0826

</>112 = </>111> </>122 = </>121> cP212 = </>211> </>222 = </>221'
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Cl:l

FIG. 2. The comparison between the approximate solutions ofthe linear problem of combined heat and mass
transfer obtained by the Kantorovich method and the exact solutions at the second-kind boundary
conditions: (a) for °1 ; (b) for O2 (--, approximate solutions; -, exact solutions). Ko* = 1.4, Pn = 0.5,

LII = 0.6, Kiq = 1, Kim = 0.5.

'"Cl:l

o 02

X

FIG. 3. The distribution of the fields of nondimensional transport parameters at X ;;, 0 and second-kind
boundary conditions: (a) for </>.; (b) for 02' Ko* = 1.4, Pn = 0.5, LII = 0.6, Ki, = 1, Kim = 0.5; nil = nl2

= k = 0.5.
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process of combined transfer. The investigation of
equations (10)and (16)for the coefficients1111'1112, and k
varying in the functions At I> At 2 and K from 0 to 1
shows that a simultaneous increase of these coefficients
leads to a slight retardation of the heat and mass
transfer process. The same values ofOI and O2 at a fixed
point in the medium on an increase of 1111> 111 2 and k are
obtained, in this case, for a larger time interval.
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METHODE VARIATIONNELLE POUR LA SOLUTION DES PROBLH.fES DE
TRANSFERTS COMBINES DE CHALEUR ET DE MASSE

Resume-s-La methode variationnelle de Kantorovich est utilisee pour obtenir les solutions approchees des
problernes non lineaires de transferts combines de chaleur et de masse avec des conditions aux Iimites de
premiere et de seconde espece dans une plaque infinie. Les solutions obtenues ont la propriete de convergence

et la precision souhaitable pour des applications pratiques.

LOSUNG DES KOMBINIERTEN WARME- UND STOFFOBERGANGSPROBLEMS
MIT HILFE DER VARIATIONSRECHNUNG

Zusammenfassung-Das Verfahren der Variationsrechnung nach Kantorovich wurde verwendet, urn
Naherungslosungen des nicht-linearen kombinierten Warme- und Stoffiibergangsproblems bei
Randbedingungen erster und zweiter Art fiir eine unendliche Platte zu erhalten. Die gewonnenen Losungen

sind konvergent und genau genug fiir praktische Anwendungen.

BAPUAUUOHHLIH METOLJ. PElllEHUJI 3ALJ.A4 B3AUMOCBJl3AHHOrO
TEnJIO·U MACCOnEPEHOCA

Aunorauaa-c-Bapnauaonunti sreron Kauropoanxa IICnOJlb30BaH nns nonyseans npII6Jl11JKeHHbiX
pemeuuii ncnanenuux aanax B3allMOCB1I3aHHoro TenJlO- 1\ Macconepelloca npn rpaHII'IlIblX YCJlOBIIlIX
I II II porta B ueorpaunxeuuoii nnacrnae. Ilonyseauue peurenns aanax 06JlallaJOT CBollcTBO~1

CXOlllI~IOCTII 111l0CTaTO'lIlOli B IIHJKeHeplloii npaKTIIKe TO'lIlOCTbJO.




